| Segments (Marks-1) |
Length L |
Optimal Wichmann(r,s) |
| 1 | 1 | |
| 2 | 2 - 3 | |
| 3 | 4 - 6 | (0,1) |
| 4 | 7 - 9 | (0,2) |
| 5 | 10 - 13 | |
| 6 | 14 - 17 | |
| 7 | 18 - 23 | |
| 8 | 24 - 29 | (1,2) |
| 9 | 30 - 36 | (1,3) |
| 10 | 37 - 43 | (1,4) |
| 11 | 44 - 50 | (1,5) |
| 12 | 51 - 58 | |
| 13 | 59 - 68 | (2,3) |
| 14 | 69 - 79 | (2,4) |
| 15 | 80 - 90 | (2,5) |
| 16 | 91 - 101 | (2,6) |
| 17 | 102 - 112 | (2,7) |
| 18 | 113 - 123 | (2,8) and (3,4) |
| 19 | 124 - 138 | (3,5) |
| 20 | 139 - 153 | (3,6) |
| 21 | 154 - 168 | (3,7) |
| 22 | 169 - 183 | (3,8) |
| 23 | 184 - 198 | (3,9) |
| 24 | 199 - 213 | (3,10) and (4,6) |
| 25 | 214 - 232 | (4,7) |
| 26 | 233 - 251 | (4,8) |
| 27 | 251 - 270 | (4,9) |
| 28 | 271 - 289 | (4,10) |
| 29 | 290 - 308 | (4,11) |
| 30 | 309 - 327 | (4,12) and (5,8) |
| 31 | 328 - 350 | (5,9) |
| 32 | 351 - 373 | (5,10) |
| 33 | 374 - 396 | (5,11) |
| 34 | 397 - 419 | (5,12) |
| 35 | 420 - 442 | (5,13) |
| 36 | 443 - 465 | (5,14) and (6,10) |
| 37 | 466 - 492 | (6,11) |
| 38 | 493 - 519 | (6,12) |
| 39 | 520 - 546 | (6,13) |
| 40 | 547 - 573 | (6,14) |
| 41 | 574 - 600 | (6,15) |
| 42 | 601 - 627 | (6,16) and (7,12) |
| 43 | 628 - 658 | (7,13) |
| 44 | 659 - 689 | (7,14) |
| 45 | 690 - 720 | (7,15) |
| 46 | 721 - 751 | (7,16) |
| 47 | 752 - 782 | (7,17) |
| 48 | 783 - 813 | (7,18) and (8,14) |
| 49 | 814 - 848 | (8,15) |
| 50 | 849 - 883 | (8,16) |
| 51 | 884 - 918 | (8,17) |
| 52 | 919 - 953 | (8,18) |
| 53 | 953 - 988 | (8,19) |
| 54 | 989 - 1023 | (8,20) and (9,16) |
| 172 | . - 10017 | (27,62) |
| 547 | . - 100022 | (86,201) |
| 1731 | . - 1000086 | (294,553) |
| 5476 | . - 10000065 | (921,1790) |
| 17320 | . - 100000045 | (2917,5650) |
| 54787 | . - 1000000058 | (9353,17373) |
| 173353 | . - 10000000084 | (30091,52987) |
W(r,s) = [1^r,r+1,(2r+1)^r,(4r+3)^s,(2r+2)^(r+1),1^r]
S = 4r+s+2; L = 4r(r+s+2)+3(s+1);
B. Wichmann. A note on restricted difference bases.
J. London Math.Soc.38,1962,465-466