
| Triangular form |
| 1 |
|
| 1 |
0 |
|
| -1 |
2 |
0 |
|
| -2 |
-3 |
3 |
0 |
|
| 5 |
-8 |
-6 |
4 |
0 |
|
| 16 |
25 |
-20 |
-10 |
5 |
0 |
|
| -61 |
96 |
75 |
-40 |
-15 |
6 |
0 |
|
| sum |
als |
gcd |
lcm |
| 0 |
0 |
0 |
1 |
| 1 |
1 |
0 |
1 |
| 3 |
1 |
1 |
2 |
| 8 |
2 |
1 |
6 |
| 23 |
1 |
1 |
120 |
| 76 |
6 |
1 |
400 |
| 293 |
9 |
1 |
146400 |
|
| Linear form (by rows) |
| Western |
A173018 |
1,1,0,1,1,0,1,4 |
| Eastern |
A123125 |
1,0,1,0,1,1,0,1 |
| Rectangular form |
| 0 |
1 |
-1 |
-2 |
5 |
16 |
-61 |
| 0 |
2 |
-3 |
-8 |
25 |
96 |
-427 |
| 0 |
3 |
-6 |
-20 |
75 |
336 |
-1708 |
| 0 |
4 |
-10 |
-40 |
175 |
896 |
-5124 |
| 0 |
5 |
-15 |
-70 |
350 |
2016 |
-12810 |
| 0 |
6 |
-21 |
-112 |
630 |
4032 |
-28182 |
| 0 |
7 |
-28 |
-168 |
1050 |
7392 |
-56364 |
Maple T07 := proc(n,k) binomial(n,k)*2^(n-k)*(euler(n-k,1/2)+euler(n-k,1)) end:
TeX T_{07}(n,k)=\binom{n}{k}2^{n-k}(E_{n-k}(1/2)+E_{n-k}(1))