
| Triangular form |
| 1 |
|
| 1 |
0 |
|
| 1 |
1 |
0 |
|
| 1 |
4 |
1 |
0 |
|
| 1 |
11 |
11 |
1 |
0 |
|
| 1 |
26 |
66 |
26 |
1 |
0 |
|
| 1 |
57 |
302 |
302 |
57 |
1 |
0 |
|
| sum |
als |
gcd |
lcm |
| 1 |
1 |
1 |
1 |
| 1 |
1 |
1 |
1 |
| 2 |
0 |
1 |
1 |
| 6 |
2 |
4 |
4 |
| 24 |
0 |
11 |
11 |
| 120 |
16 |
2 |
858 |
| 720 |
0 |
1 |
17214 |
|
| Linear form (by rows) |
| Western |
A173018 |
1,1,0,1,1,0,1,4 |
| Eastern |
A123125 |
1,0,1,0,1,1,0,1 |
| Rectangular form |
| 1 |
1 |
1 |
1 |
1 |
1 |
1 |
| 0 |
1 |
4 |
11 |
26 |
57 |
120 |
| 0 |
1 |
11 |
66 |
302 |
1191 |
4293 |
| 0 |
1 |
26 |
302 |
2416 |
15619 |
88234 |
| 0 |
1 |
57 |
1191 |
15619 |
156190 |
1310354 |
| 0 |
1 |
120 |
4293 |
88234 |
1310354 |
15724248 |
| 0 |
1 |
247 |
14608 |
455192 |
9738114 |
162512286 |
Maple T12 := proc(n,k) local j; add((-1)^j*(1+k-j)^n*binomial(n+1,j),j=0..k) end:
TeX T_{12}(n,k) = \sum_{j=0}^k(-1)^j\binom{n+1}{j}(k-j+1)^n